Innovation is the strangest mix of slow and lightning fast. The slow part is all the tedious research done in labs and at universities, the hard (and slow work) of specifications, and the macro trends building persistently. These are all necessary enablers, but are for the most time not recognized as groundbreaking inventions, even if they sometimes render a Nobel Prize decades after they were done.

The missing part, and what we often perceive as the innovation that moves at the speed of light, is when the application is added on top of the new technology. This allows the full power of the underlying technology to be productive and generate a benefit for its users. The real trick here is to get the timing right and, as always, understanding the economic drivers and prerequisites for success.

If we focus on the use of mmWave in 5G, all the fundamental research and specification work has been done and we now have a VERY potent technology at our disposal. 5G has a few bold promises with “endless” capacity, “no” latency and “fiber like” speed. This enables innovations like remote surgery, remote control of different types of vehicles, industrial automation, virtual presence, etc.

BUT none of the above applications will be drivers of 5G. They will (almost) all happen once mmWave is widely deployed and available, but for none of them, on an individual basis, will it make financial sense to take the full, or even part, of a network investment. This is nothing new since it seems like every amazing and promising technology is always looking for the “killer app”, the one application that on its own can justify the wide deployment of the base technology. Once this is done and the technology is deployed, there will be an avalanche of innovative use cases and devices being built. I believe that many of us have been in the situation where we have tried to orchestrate a technology liftoff by trying to use the collective power of many different applications and, unfortunately, I believe there are almost as many of us who have failed, myself included. It simply seems to be a universal truth that a single killer app is needed.

This is probably also the explanation to the phenomena that so many have observed over and over again, namely that promising technologies always impact the market later than expected but once it happens the impact is way bigger than anyone would have dreamed of. It takes something to start an avalanche, but once started there is nothing stopping it!

A picture containing outdoor, nature, snow, slope

Description automatically generated

So, what is the killer app for mmWave and 5G?

I will say…the smartphone!

But wait a minute, that was the killer app already for 4G! Yes, that is true … and your expectation of that killer app is an increased data bucket at a lower price. The operator needs a constantly lower price per bit sent and that is not possible without new technology and new frequency bands like mmWave. I also know that BeammWave’s digital beamforming solution will be one of the key enablers for making mmWave in 5G happen for the mass market.


Many believe the main reason for introducing communication in the mmWave frequency range (24 GHz and above) in 5G-NR is to allow for use cases requiring Gb/s such as VR or AR use cases. It is true that such use cases require a lot of bandwidth not existing in current sub 6 GHz frequency bands, and it is also true that 5G will be an unprecedented innovation platform for the coming decade, however the main driver is the need for more capacity in the radio spectrum.

Data consumption explosion over cellular is expected to grow exponentially and hence there will be a time, predicted to be around 2023 starting in Mega cities, where communication over the sub 6 GHz frequency bands start to reach its capacity limits.

The only way to support such data rate explosion in the world’s cellular networks is to utilize the mmWave frequency bands. In order to solve that, all wireless devices such as smartphones, both high end and low end, and even IoT devices, need in the near future to support communication in the mmWave frequency band. Therefore, mmWave communication, with all their challenges such as shorter coverage and high sensitivity for blocking radio signals by hands or other obstacles, need to be solved by a sustainable and scalable digital beamforming solution optimized from all angles of the system, not only focusing on the radio front end parts, which typically comes into one’s mind talking about mmWave radio communication, but also things such as:

– System architecture including radio and baseband interface
– Digital beamforming algorithms
– Mobility and handover procedures
– Performance and power consumption

BeammWave knows the entire system and delivers the digital beamforming architecture enabling the mass market for mmWave communication in handheld devices opening up the almost endless capacity existing in the mmWave frequency band!